PDF download Download Article PDF download Download Article

Permutations and combinations have uses in math classes and in daily life. Thankfully, they are easy to calculate once you know how. Unlike permutations, where group order matters, in combinations, the order doesn't matter.[1] Combinations tell you how many ways there are to combine a given number of items in a group. To calculate combinations, you just need to know the number of items you're choosing from, the number of items to choose, and whether or not repetition is allowed (in the most common form of this problem, repetition is not allowed).

Method 1
Method 1 of 2:

Calculating Combinations Without Repetition

PDF download Download Article
  1. In this kind of problem, you won't use the same item more than once.
    • For instance, you may have 10 books, and you'd like to find the number of ways to combine 6 of those books on your shelf. In this case, you don't care about order - you just want to know which groupings of books you could display, assuming you only use any given book once.
    • This kind of problem is often labeled as , , , or "n choose r".
    • In all of these notations, is the number of items you have to choose from (your sample) and is the number of items you're going to select.[2]
  2. Watermark wikiHow to Calculate Combinations
    .[3] [4]
    • The formula is similar the one for permutations but not exactly the same. Permutations can be found using . The combination formula is slightly different because order no longer matters; therefore, you divide the permutations formula by in order to eliminate the redundancies.[5] You are essentially reducing the result by the number of options that would be considered a different permutation but the same combination (because order doesn't matter for combinations).[6] [7]
    Advertisement
  3. Watermark wikiHow to Calculate Combinations
    Plug in your values for and .
    • In the case above, you would have this formula: . It would simplify to .
  4. Watermark wikiHow to Calculate Combinations
    You can do this either by hand or with a calculator.
    • If you have a calculator available, find the factorial setting and use that to calculate the number of combinations. If you're using Google Calculator, click on the x! button each time after entering the necessary digits.
    • If you have to solve by hand, keep in mind that for each factorial, you start with the main number given and then multiply it by the next smallest number, and so on until you get down to 0.
      • For the example, you can calculate 10! with (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1), which gives you 3,628,800. Find 4! with (4 * 3 * 2 * 1), which gives you 24. Find 6! with (6 * 5 * 4 * 3 * 2 * 1), which gives you 720.
      • Then multiply the two numbers that add to the total of items together. In this example, you should have 24 * 720, so 17,280 will be your denominator.
      • Divide the factorial of the total by the denominator, as described above: 3,628,800/17,280.
    • In the example case, you'd do get 210. This means that there are 210 different ways to combine the books on a shelf, without repetition and where order doesn't matter.
    Peter J. Cameron
    Peter J. Cameron, Mathematician

    To calculate the number of r-combinations from a set of n elements, we use the binomial coefficient notation C(n,r), which gives the formula C(n,r) = n! / (r!(n-r)!). This formula counts the number of ways to choose an unordered subset of r elements from a set of n elements. For example, say we want to know the number of ways to pick a committee of 5 people from a group of 12. Here, n=12 and r=5. Plugging into the formula, we get C(12,5) = 12! / (5!(12-5)!) = 792.

  5. Advertisement
Method 2
Method 2 of 2:

Calculating Combinations with Repetition

PDF download Download Article
  1. Watermark wikiHow to Calculate Combinations
    In this kind of problem, you can use the same item more than once.
    • For instance, imagine that you're going to order 5 items from a menu offering 15 items; the order of your selections doesn't matter, and you don't mind getting multiples of the same item (i.e., repetitions are allowed).
    • This kind of problem can be labeled as . You would generally use to represent the number of options you have to choose from and to represent the number of items you're going to select.[8] Remember, in this kind of problem, repetition is allowed and the order isn't relevant.
    • This is the least common and least understood type of combination or permutation, and isn't generally taught as often.[9] Where it is covered, it is often also known as a k-selection, a k-multiset, or a k-combination with repetition.[10]
  2. Watermark wikiHow to Calculate Combinations
    .[11] [12]
  3. Watermark wikiHow to Calculate Combinations
    Plug in your values for and .
    • In the example case, you would have this formula: . It would simplify to .
  4. Watermark wikiHow to Calculate Combinations
    You can do this either by hand or with a calculator.
    • If you have a calculator available, find the factorial setting and use that to calculate the number of combinations. If you're using Google Calculator, click on the x! button each time after entering the necessary digits.
    • If you have to solve by hand, keep in mind that for each factorial, you start with the main number given and then multiply it by the next smallest number, and so on until you get down to 0.
    • For the example problem, your solution should be 11,628. There are 11,628 different ways you could order any 5 items from a selection of 15 items on a menu, where order doesn't matter and repetition is allowed.
  5. Advertisement

Community Q&A

Search
Add New Question
  • Question
    For: 6 starters 10 mains 7 desserts, how many different three course meals?
    Alex
    Alex
    Top Answerer
    You can use what is called a “counting method” or by creating a tree. You don’t actually need the formula; you can simply do 6x10x7 and you will get the answer, which is 420.
  • Question
    How many combinatioons of 2 are in 32 numbers?
    Alex
    Alex
    Top Answerer
    There are 496 combinations without repetition. Here’s the formula: 32!/(32-2)!*2! = 32*31/2! = 496.
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement

Tips

  • Some graphing calculators offer a button to help you solve combinations without repetition quickly. It usually looks like nCr. If your calculator has one, hit your value first, then the combination button, and then your value.[13]
Submit a Tip
All tip submissions are carefully reviewed before being published
Name
Please provide your name and last initial
Thanks for submitting a tip for review!
Advertisement

You Might Also Like

Advertisement

About This Article

Joseph Meyer
Reviewed by:
Math Teacher
This article was reviewed by Joseph Meyer. Joseph Meyer is a High School Math Teacher based in Pittsburgh, Pennsylvania. He is an educator at City Charter High School, where he has been teaching for over 7 years. Joseph is also the founder of Sandbox Math, an online learning community dedicated to helping students succeed in Algebra. His site is set apart by its focus on fostering genuine comprehension through step-by-step understanding (instead of just getting the correct final answer), enabling learners to identify and overcome misunderstandings and confidently take on any test they face. He received his MA in Physics from Case Western Reserve University and his BA in Physics from Baldwin Wallace University. This article has been viewed 167,660 times.
30 votes - 62%
Co-authors: 8
Updated: April 19, 2024
Views: 167,660
Categories: Mathematics
Thanks to all authors for creating a page that has been read 167,660 times.

Reader Success Stories

  • Gekonwi

    Gekonwi

    Nov 7, 2023

    "These formulas are useful for coding interview questions. I.e. they help to get a job as a Software Engineer."
Share your story

Did this article help you?

Advertisement