PDF download Download Article PDF download Download Article

A perpendicular bisector is a line that cuts a line segment connecting two points exactly in half at a 90 degree angle. To find the perpendicular bisector of two points, all you need to do is find their midpoint and negative reciprocal, and plug these answers into the equation for a line in slope-intercept form. If you want to know how to find the perpendicular bisector of two points, just follow these steps.

Method 1
Method 1 of 2:

Gathering Information

PDF download Download Article
  1. Find the midpoint of the two points. To find the midpoint of two points, simply plug them into the midpoint formula: [(x1 + x2)/2,( y1 + y2)/2]. This means that you're just finding the average of the x and y coordinates of the two sets of points, which leads you to the midpoint of the two coordinates. Let's say we're working with the (x1, y1) coordinates of (2, 5) and the (x2, y2) coordinates of (8, 3). Here's how you find the midpoint for those two points:[1]
    • [(2+8)/2, (5 +3)/2] =
    • (10/2, 8/2) =
    • (5, 4)
    • The coordinates of the midpoint of (2, 5) and (8, 3) are (5, 4).
  2. To find the slope of the two points, simply plug the points into the slope formula: (y2 - y1) / (x2 - x1). The slope of a line measures the distance of its vertical change over the distance of its horizontal change. Here's how to find the slope of the line that goes through the points (2, 5) and (8, 3):[2]
    • (3-5)/(8-2) =
    • -2/6 =
    • -1/3
      • The slope of the line is -1/3. To find this slope, you have to reduce 2/6 to its lowest terms, 1/3, since both 2 and 6 are evenly divisible by 2.
    Advertisement
  3. To find the negative reciprocal of a slope, simply take the reciprocal of the slope and change the sign. You can take the negative reciprocal of a number simply by flipping the x and y coordinates and changing the sign. The normal reciprocal of 1/2 would be 2/1 and the negative reciprocal is -2/1, or just -2; the reciprocal of -4 is 1/4.[3]
    • The negative reciprocal of -1/3 is 3 because 3/1 is the reciprocal of 1/3 and the sign has been changed from negative to positive.
  4. Advertisement
Method 2
Method 2 of 2:

Calculating the Equation of the Line

PDF download Download Article
  1. Write the equation of a line in slope-intercept form. The equation of a line in slope-intercept form is y = mx + b where any x and y coordinates in the line are represented by the "x" and "y," the "m" represents the slope of the line, and the "b" represents the y-intercept of the line. The y-intercept is where the line intersects the y-axis. Once you write down this equation, you can begin to find the equation of the perpendicular bisector of the two points.[4]
  2. The negative reciprocal of the slope of the points (2, 5) and (8, 3) was 3. The "m" in the equation represents the slope, so plug the 3 into the "m" in the equation of y = mx + b.[5]
    • 3 --> y = mx + b =
    • y = 3x + b
  3. You already know that the midpoint of the points (2, 5) and (8, 3) is (5, 4). Since the perpendicular bisector runs through the midpoint of the two lines, you can plug the coordinates of the midpoint into the equation of the line. Simply plug in (5, 4) into the x and y coordinates of the line.[6]
    • (5, 4) ---> y = 3x + b =
    • 4 = 3(5) + b =
    • 4 = 15 + b
  4. You have found three of the four variables in the equation of the line. Now you have enough information to solve for the remaining variable, "b," which is the y-intercept of this line. Simply isolate the variable "b" to find its value. Just subtract 15 from both sides of the equation.[7]
    • 4 = 15 + b =
    • -11 = b
    • b = -11
  5. To write the equation of the perpendicular bisector, you simply have to plug in the slope of the line (3) and the y-intercept (-11) into the equation of a line in slope-intercept form. You should not plug in any terms into the x and y coordinates, because this equation will allow you to find any coordinate on the line by plugging in either any x or any y coordinate.[8]
    • y = mx + b
    • y = 3x - 11
    • The equation for the perpendicular bisector of the points (2, 5) and (8, 3) is y = 3x - 11.
  6. Advertisement

Community Q&A

Search
Add New Question
  • Question
    What if one of the numbers is a negative, and when I try to find the midpoint it gives me 0? The points are A(-4,4) and B(4,8).
    Donagan
    Donagan
    Top Answerer
    Zero is correct. The x-value midway between -4 and +4 is 0. The y-value midway between 8 and 4 is 6. So the midpoint is (0,6).
  • Question
    What is the exact length of a line joining the points (-12,3) and (8,4)?
    Donagan
    Donagan
    Top Answerer
    Visualize a right triangle, the hypotenuse of which is the line joining the two points. One leg of the triangle has this length: 8 - (-12) = 8 + 12 = 20. The length of the other leg is 4 - 3 = 1. The hypotenuse has this length: √(20² + 1²) = √401. Thus, the distance between the points is 20.025.
  • Question
    Is a bisector the same as the negative reciprocal of the line?
    Donagan
    Donagan
    Top Answerer
    No. A line's negative reciprocal would be another line perpendicular to it but not necessarily bisecting it.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement

Video

Tips

Submit a Tip
All tip submissions are carefully reviewed before being published
Name
Please provide your name and last initial
Thanks for submitting a tip for review!

You Might Also Like

Find the Equation of a LineFind the Equation of a Line
Construct a Perpendicular Line to a Given Line Through Point on the LineConstruct a Perpendicular Line to a Given Line Through Point on the Line
Construct a Bisector of a Given AngleConstruct a Bisector of a Given Angle
Find the Slope of a Line Calculate the Slope of a Line
Find the Angle Between Two Vectors2 Simple Ways to Calculate the Angle Between Two Vectors
Find Vertical Asymptotes of a Rational FunctionFind Vertical Asymptotes of a Rational Function
Find the Distance Between Two PointsFind the Distance Between Two Points
Find the Length of the HypotenuseFind the Length of the Hypotenuse
Find the Vertex of a Quadratic EquationFind the Vertex of a Quadratic Equation
Graph a ParabolaGraph a Parabola
Graph an EquationGraph an Equation
Use the Pythagorean TheoremUse the Pythagorean Theorem
Find the Equation of a Perpendicular Line Given an Equation and PointFind the Equation of a Perpendicular Line Given an Equation and Point
Find the Equation of a Perpendicular LineFind the Equation of a Perpendicular Line
Advertisement

About This Article

Grace Imson, MA
Reviewed by:
Math Teacher
This article was reviewed by Grace Imson, MA. Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University. This article has been viewed 1,116,597 times.
13 votes - 86%
Co-authors: 31
Updated: September 29, 2024
Views: 1,116,597
Categories: Coordinate Geometry
Article SummaryX

To find the perpendicular bisector of 2 points, find the midpoint of the 2 points by using the midpoint formula. Then, find the slope of the 2 points by using the slope formula, and find the negative reciprocal of the slope by taking the reciprocal and changing the sign. Write the equation of the line in point-slope form using the negative reciprocal and the midpoint. Solve the equation for the intercept to find the perpendicular bisector. For more information, including the formulas for finding midpoint and slope, scroll down!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,116,597 times.

Reader Success Stories

  • Anonymous

    Anonymous

    Oct 23, 2016

    "Great explanation! My teacher didn't explain it quite like this. Thank you so much, I appreciated this..." more
Share your story

Did this article help you?

Advertisement