PDF download Download Article
The formula to determine the area under a curve, plus lots of helpful examples.
PDF download Download Article

While finding the area under a curve in calculus isn’t as straightforward as finding the area of various geometric shapes, it’s not as difficult as you might fear! We’re here to help you understand the question, choose the right formula, plug in the data, and calculate the result. Check out the detailed example for a step-by-step walk-through, then move onto the sample problems to help build your skills.

Things You Should Know

  • Plug your given function into the formula A = ∫a,b f(x) dx.
  • Use the power rule [∫a,b f(x) dx = (n^x+1)/(n+1) |a,b] to set up your calculation.
  • Utilize the fundamental theorem [∫a,b f(x) dx = F(b) - F(a)] to complete the problem and find your answer.
Section 1 of 3:

Summary

PDF download Download Article
Section 2 of 3:

Detailed Example

PDF download Download Article
  1. Expect the question to be phrased something along these lines. To help you visualize the curve and the area you need to determine, consider graphing the function.[2]
    • If you do graph it, you’ll see that y=x^2 looks like a big smiley face with its vertex (the point where the curve changes direction) at x=0, y=0. For this sample problem, you need to calculate the area (in square units) between the vertex (x=0) and an imaginary straight line drawn from x=4 along the x-axis up to the curve.
  2. As mentioned in the “Summary” section of this article, you need to do a definite integral between two points (limits) in order to determine the area under a curve between those two points. In our example, the function (f(x)) is y=x^2, and the limits are x=0 and x=4):[3]
    • A = ∫a,b f(x) dx A = ∫0,4 x^2 dx
  3. Start integrating by using the “power rule”—raising the exponent of the function by one and dividing it by that raised exponent. In this case, that means x^2 becomes (x^3)/3. Place a vertical bar afterward to designate the limits:[4]
    • A = (x^3)/3 |0,4
  4. According to the fundamental theorem of calculus, ∫a,b f(x) dx = F(b) - F(a). You get F(b) by plugging b (x=4) into (x^3)/3, and F(a) by plugging a (x=0) into the same:[5]
    • A = [(4^3)/3] - [(0^3)/3]
  5. You’re in the home stretch now—just navigate some arithmetic and you’ll have the answer! Remember to label your area result as “square units” unless given a different unit of measurement.[6]
    • A = 64/3 - 0
    • A = 21 1/3 square units
  6. Advertisement
Section 3 of 3:

Sample Problems

PDF download Download Article
    • A = ∫a,b f(x) dx
    • A = ∫1,3 x^3 dx
    • A = (x^4)/4 |1,3
    • A = (3^4)/4 - (1^4)/4
    • A = 81/4 - 1/4 = 80/4
    • A = 20 square units
    • A = ∫a,b f(x) dx
    • A = ∫-2,2 x^3 dx
    • A = (x^4)/4 |-2,2
    • A = (2^4)/4 - (-2^4)/4
    • A = 16/4 - 16/4
    • A = 0 square units
      • This answer may seem wrong, especially if you graph y=x^3: how can it have zero area under the curve? Mathematically speaking, any area below the x-axis is a negative area; since the areas above and below the x-axis are equal and cancel each other out, the result is A = 0.
    • A = ∫a,b f(x) dx
    • A = ∫-2,4 x^3 dx
    • A = (x^4)/4 |-2,4
    • A = (4^4)/4 - (-2^4)/4
    • A = 256/4 - 16/4 = 240/4
    • A = 60 square units
      • Like with the previous example (y=x^3 from x=-2 to x=2), remember that the area below the x-axis is actually a negative area. In this case, though, there is a greater area above the axis, leading to the final positive result.[7]
    • A = ∫a,b f(x) dx
    • A = ∫1,4 1/(x^2) dx = ∫1,4 x^-2 dx
    • A = (x^-1)/-1 |1,4 = -1/x |1,4
    • A = -1/4 - (-1/1) = -1/4 + 1
    • A = 3/4 square units
    • A = ∫a,b f(x) dx
    • A = ∫1,2 x^2-2x+8 dx
    • A = (x^3)/3 - (2x^2)/2 + 8x |1,2
    • A = (x^3)/3 - x^2 + 8x |1,2
    • A = [(2^3)/3 - 2^2 + 8(2)] - [(1^3)/3 - 1^2 + 8(1)]
    • A = [8/3 - 4 + 16] - [1/3 - 1 + 8]
    • A = 8/3 - 4 + 16 - 1/3 + 1 - 8
    • A = 5 + 7/3 = 7 1/3 square units
    • A = ∫a,b f(x) dx
    • A = ∫0,3 x^2-3x+5
    • A = (x^3)/3 - (3x^2)/2 + 5x |0,3
    • A = [(3^3)/3 - (3(3^2))/2 + 5(3)] - [(0^3)/3 - (3(0^2))/2 + 5(0)]
    • A = 27/3 - 27/2 + 15 - 0 = 24 - 27/2
    • A = 10 1/2 square units
  1. Advertisement

Expert Q&A

Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement

Tips

Submit a Tip
All tip submissions are carefully reviewed before being published
Name
Please provide your name and last initial
Thanks for submitting a tip for review!

You Might Also Like

Integrate Solve an Integral Equation in Calculus
Understand CalculusUnderstand Calculus
Differentiate the Square Root of XDifferentiate the Square Root of X
Find the Equation of a Tangent LineFind the Equation of a Tangent Line
Take Derivatives Find Derivatives
Find Inflection Points Locate the Points of Inflection for an Equation
Integrate Using the Tabular MethodIntegrate Using the Tabular Method
Calculate the Fourier Transform of a FunctionCalculate the Fourier Transform of a Function
Calculate a Basic Derivative of a FunctionCalculate a Basic Derivative of a Function
Integrate the Sinc FunctionIntegrate the Sinc Function
Solve Related Rates in CalculusSolve Related Rates in Calculus
Integrate Using the Gamma FunctionIntegrate Using the Gamma Function
Find the Derivative from a Graph Find the Derivative from a Graph: Review for AP Calculus
Do Implicit DifferentiationDo Implicit Differentiation
Advertisement

About This Article

JohnK Wright V
Co-authored by:
Texas Certified Math Teacher
This article was co-authored by JohnK Wright V and by wikiHow staff writer, Christopher M. Osborne, PhD. JohnK Wright V is a Certified Math Teacher at Bridge Builder Academy in Plano, Texas. With over 20 years of teaching experience, he is a Texas SBEC Certified 8-12 Mathematics Teacher. He has taught in six different schools and has taught pre-algebra, algebra 1, geometry, algebra 2, pre-calculus, statistics, math reasoning, and math models with applications. He was a Mathematics Major at Southeastern Louisiana and he has a Bachelor of Science from The University of the State of New York (now Excelsior University) and a Master of Science in Computer Information Systems from Boston University. This article has been viewed 52,436 times.
10 votes - 88%
Co-authors: 5
Updated: November 15, 2024
Views: 52,436
Categories: Calculus
Thanks to all authors for creating a page that has been read 52,436 times.

Did this article help you?

Advertisement